在线免费看污视频I亚洲欧美另类在线I狠狠干天天I99ri在线观看I九一avI女生毛片Ixxxrtxxx性国产Ia√在线视频I欧美日一本Ixxxx大片I丝袜五月天I国产肥熟I青青青在线视频I天堂网在线中文I亚洲综合成人avI日韩欧美中文I有码一区I亚洲电影avI欧美日韩乱国产I国产特黄

新聞活動


    
首頁新聞活動 新聞
返回

技術分享 | 仿真和建模在高功率半導體激光器封裝中的關鍵作用

發布日期:2020-11-16

Originally published on Laser Focus World?

炬光科技多年來一直注重基礎研究,每年在專業期刊、雜志、學術會議等平臺發表各類技術文章,并曾出版世界第一本高功率半導體激光器封裝專著。近日,《Laser Focus World》發表了炬光科技首席科學家王警衛等撰寫的技術文章《Simulation and modeling play key roles in high-power diode-laser packaging》,文章針對激光技術發展對封裝技術提出的新挑戰,介紹了仿真和建模在高功率半導體激光器封裝中發揮的關鍵作用。

文章概要如下:

高功率半導體激光器已廣泛應用于很多行業。隨著激光技術的發展,其輸出光功率越來越高,激光巴條的腔長也相應地由1mm增加到了4mm。因此,巴條的廢熱能量密度從200W/cm2急劇增加到>600W/cm2。為獲得低的“SMILE”,如<1μm,或防止巴條在貼片鍵合后出現裂紋,需要采用腔長1.5mm~4mm的巴條,并優化封裝結構,最大限度地降低熱應力。這兩者都給現有的封裝技術帶來了挑戰,從而有必要使用有限元模型(FEM)來計算和模擬高功率半導體激光器的熱行為和熱應力管理。

我們研究了在連續波(CW)或準連續波(QCW)模式下,不同封裝結構有限元模擬技術的應用,所涉及的計算和模擬仿真都是基于炬光科技的產品,包括單巴傳導冷卻/微通道系列、傳導冷卻G-stack、水冷疊陣和面陣。我們還提出了在制造高功率半導體激光器之前利用FEM工具進行熱與應力模擬的指導方針。此類模擬仿真結果可有效降低封裝結構或激光系統出現的潛在熱與應力風險,并有助于降低試驗成本、優化流程,最終滿足不同客戶的需求。

Simulation and modeling play key roles in high-power diode-laser packaging

Finite-element method (FEM) simulations reduce potential thermal and stress risks when designing packaging structures for high-power laser-diodes.

JINGWEI WANG, TUANWEI FU, and XUEJIE LIANG

FOCUSLIGHT TECHNOLOGIES INC.

High-power diode-lasers (HPDLs) are now widely used for industrial (materials processing procedures such as welding, cutting, surface treatment, etc.), scientific, and medical applications. The need to design advanced high-power laser packages, to understand the physics of the behaviors of these packages and its interfaces, and to prevent possible functional (optical) and mechanical (physical) failures are of obvious practical importance. As laser technologies develop, the output power of HPDLs has grown, along with the cavity length of diode laser bars increasing from 1 to 4 mm. As a result, the waste-heat energy density of a single diode laser bar has increased dramatically from 200 W/cm2 to more than 600 W/cm2.

Many failures in HPDLs—for example, bonding interfaces—are directly related to the packaging.1 Thermal behaviors of the bonding interfaces and thermal stresses between the bonding interfaces are the major factors affecting the functional and structural performance of HPDLs. If the accumulated heat cannot readily escape, the elevated temperature and thermally induced stress at the location of the p-n junction will not only adversely affect the output power, slope efficiency, threshold current, and device lifetime, but could also cause spectral broadening and wavelength shifts.2 The emitting wavelengths will shift if the junction temperature of the emitters across the array is not well controlled and/or not uniform. The above-mentioned scenarios make the thermal management of high-power laser devices a major challenge in designing, manufacturing, and utilizing HPDLs.

Simulation and modeling of thermal stress in packaging of HPDLs

微信圖片_20201225220659.png

FIGURE 1. An AL01 1064 nm laser module for lidar. (Courtesy of Focuslight)

Automotive lidar has become a very popular application for lasers in recent years. Focuslight Technologies (X’ian, China) offers various products for automotive lidar applications. Focuslight’s AL01 laser module (see Fig. 1) is designed for flash lidar applications. The module is a diode-pumped solid-state (DPSS) laser that uses Q-switch technology to enable pulse energies of up to 1.5 mJ per 3 ns pulse at 1064 nm wavelength. To ensure its stability at automotive-grade temperatures (-40° to 80°C), the module was designed and manufactured with advanced bonding and assembly processes; some special materials have been used as well.

微信圖片_20201225220703.png

FIGURE 2. Structure and stress: mismatched CTE (a) and matched CTE (b).

During the design process, the coefficient of thermal expansion (CTE)-matched principle was taken into account as a crucial factor. CTE mismatch between the laser bar and the thermoelectric cooler (TEC) could bring large thermal stress to the packaging process, cause a lot of cracks at the corner of the TEC, and potentially lead to device failure. The optimized selection of materials and dimensions has been achieved through repeated calculation and simulation modeling (see Fig. 2). By doing this, the final packaging structure has prevented cracks from forming at the corner of the TEC. Digital simulations helped the developer to find the right solution rapidly. Mass production and stable performance of AL01 modules have proved that the package design is optimal.

Industrial applications. Kilowatt- or even hundred-kilowatt-level HPDL stacks are widely used for scientific and industrial applications (such as annealing, bonding, surface treatment, and others). A good example is Focuslight’s 6 kW DLight Series product. Applications such as solid-state laser pumping and materials processing require good beam quality from the diode-laser stack. The near-field nonlinearity along the laser bar (also known as “SMILE”), or the slight bend of the horizontal line connecting the emitters in the bar, is the main obstacle to achieving good beam quality. Minimizing the SMILE of HPDLs is key to achieving high brightness along the fast axis.

Thermal stress causes mechanical strain in the diode and changes the band structure, thus changing the characteristics of the diode laser with respect to threshold, wavelength, polarization, and SMILE. In addition, induced thermal stress in the laser device may cause damage to the laser chips/bars and consequently shorten lifetime of the device.

SMILE and stress controlling.3 The thermal stress affecting the performance and reliability of HPDLs is mainly caused by the CTE mismatch between the mounting substrate and laser chip. For HPDL packaging, packaging materials with high thermal conductivities and CTEs that match those of the semiconductor materials—such as gallium arsenide (GaAs), indium phosphide (InP), and gallium nitride (GaN)—are desired. Thermal-stress management is one of the most critical challenges to packaging of HPDLs.

The bonding of diode laser chips onto their heat sinks is the most important step in the packaging process. Mechanical stress generated in the bonding process has typically always caused chip deformation (SMILE) as the device cooled down from the solder melting point to room temperature. As a result, how to decrease the mechanical stress in the packaging process becomes the key to minimizing the SMILE value.

微信圖片_20201225220707.png

FIGURE 3. Two different laser-diode packaging structures: HMCC (a) and DMCC (b).

微信圖片_20201225220711.png

FIGURE 4. Simulation and experiment results: simulated stress of HMCC (a); simulated stress of DMCC (b); and experimental SMILE value with increasing CuW thickness (c).

For digital-simulation modeling of this process, different packaging structures and materials were selected (see Fig. 3); the simulated results are shown in Figure 4a and 4b. A continuous-wave (CW) 200 W diode-laser bar with a thermal density of greater than 500 W/cm2 can be bonded on a microchannel cooler (MCC) heat sink. Thermal-dissipation capability should be considered in the simulation, as well as how to minimize the “SMILE” value. The finite-element model (FEM) simulation results show that the compression stress on the laser bar decreases with the increase of copper-tungsten (CuW) submount thickness, as the CuW submount works as a buffer layer and can thus absorb stress. However, the laser bar out-of-plane strain (SMILE value) is approximately zero when the diode-laser array is directly bonded onto the heat sink without a submount; the SMILE value is maximized when the thickness of the CuW submount is increased to 44% of the heat sink. Beyond this point, the SMILE value decreases with increasing CuW submount thickness. As seen in Figure 4c, the experimental results are well aligned with the simulation results.2 Therefore, the thickness of the submount affects the near-field nonlinearity of a laser bar significantly.

Simulation and modeling of heat in packaging of HPDLs

Scientific applications. Besides the SMILE, spectral width is also one of the key parameters of a diode-laser vertical stack. Improving the stack’s spectral performance is very important for increasing production yield, reducing costs, and enhancing competitiveness. For some scientific applications, narrow spectral width is especially important.

Thermal design of HPDLs is critical, as a rise of junction temperature at the location of the p-n junction will adversely affect the output power, slope efficiency, threshold current, and lifetime of the device if the accumulated heat cannot be easily dissipated. Excessive heat can also cause spectral broadening and wavelength shift. Thermal management of HPDL devices has become a major challenge in laser design, manufacturing, and application.

微信圖片_20201225220715.png

FIGURE 5. Design of parallel format for liquid cooling.

In the design process for a vertical-stack laser, one of the main problems is the thermal crosstalk, which seriously affects the cooling efficiency. To avoid thermal crosstalk, a parallel liquid-cooling format is designed to overcome heat unevenness between the bars, effectively improving the thermal dissipation. Figure 5 shows the design of the parallel format of liquid cooling.

微信圖片_20201225220721.png

FIGURE 6. Thermal distribution of a MCC-based sack in CW mode.

In the following case, the thermal design and structure optimization of a vertical-stack laser with more than 20 bars was simulated. The simulation results in Figure 6 show that most of the heat is dissipated via the cooling-flow liquid. There is no significant accumulation of heat and the temperature gradient of each bar is relatively uniform. The maximum temperature on the stack is 60.13°C.

Based on the thermal simulation, the structure is optimized in many aspects, such as cooling-water flow rate, microchannel cooler design, and water distribution. The heat is taken away as quickly as possible by the cooling water, ensuring that no thermal accumulation exists between the bars.

Although the laser bars in vertical stacks are simultaneously conduction cooled and microchannel-liquid cooled, temperature nonuniformity remains among the bars due to thermal crosstalk and/or liquid flow nonuniformity. This nonuniformity can alter the wavelength of the bars and broaden the spectrum of the stacks.

微信圖片_20201225220725.png

FIGURE 7. Relationship between water flow and temperature.

To achieve a very narrow spectral width, in our work, advanced packaging processes have been used to maintain uniformity of temperature distribution. First, total temperature distribution is simulated and calculated (see Fig. 7). Next, the wavelength of each bar is selected to match the temperature distribution based on the simulation results. The third and last step is to use optimized packaging technology to achieve the same output wavelength. Using this method, the spectrum broadening of a vertical stack can be effectively controlled.

Simulation and modeling of heat and stress in optical collimation microlenses

Optical collimation microlenses, including fast-axis collimators (FACs), slow-axis collimator (SAC) arrays, homogenizers, diffusers, collimators, beam transformation systems (BTS), and so on, are widely used in DPSS lasers, materials processing, 3D sensing, immersive photolithography, flexible display, lidar, and other application fields. These microlenses are commonly fixed on mechanical frames by adhesives. Controlling the stress on lenses and reduce the risk of cracks is therefore of great importance.

微信圖片_20201225220938.png

FIGURE 8. Stress optimization on adhesion layer.

A typical example is shown in Figure 8. A disastrous crack is found on a diffuser, although the adhesion is good. Simulation was carried out to look for causes of such cracks; the simulation results show that a higher stress, up to 61.58 MPa, occurred at one corner of the diffuser, which corresponds to the actual crack. After the adhesion in the FEA model was precisely controlled and the program run again, the stress on the diffuser decreased to 32.96 MPa, as shown in the figure. The result shows the benefit of FEM in improving adhesion processes.

Easy-to-use FEM methods have been presented for evaluating the thermal performance of HPDLs and the stress distribution in HPDLs. These methods make it much easier to understand the physics of the addressed thermal phenomena and predict their thermal behavior and performance. Digital-simulation modeling should be conducted before the manufacturing of HPDLs, helping to reduce R&D costs and quickly guiding engineers to the correct approach if thermal and stress distributions in a package are taken into account. The methodology described here for the application of diode-laser packages can also be used beyond this area of engineering for the analysis and design of packaging structures.

ACKNOWLEDGEMENT

DLight is a registered trademark of Focuslight Technologies.

REFERENCES

1. X. Liu et al., J. Appl. Phys., 100, 1, 013104 (2006).

2. H. Zhang et al., “High power 250 W CW conductively cooled diode laser arrays with low SMILE,” Proc. SPIE, 11261, 112610C (Feb. 2020).

3. C. Zah et al., “Low SMILE vertically stacked laser bars enable kW modular line lasers,” High Power Diode Lasers and System Conf. (Coventry, England), 9-10 (2017); doi:10.1109/hpd.2017.8261079.

Jingwei Wang is Chief Scientist, Tuanwei Fu is CAE Engineer, and Xuejie Liang is Manager of the Design and Simulation Technology Department, all at Focuslight Technologies, Xi’an, China.

E-mails: wangjw@focuslight.com, futw@focuslight.com, and liangxj@focuslight.com; m.szhanpeng.cn.

關于炬光科技:

西安炬光科技股份有限公司成立于2007年,是一家全球領先的專業從事高功率半導體激光器、激光微光學元器件、光子技術應用解決方案的研發、生產及銷售的國家級高新技術企業。公司圍繞光子技術及應用領域,致力于為全球客戶提供高功率半導體激光器與激光微光學核心元器件及光子技術應用解決方案,形成了全面、完善的研發、生產及銷售服務體系。

上一篇:新品發布 | Flash LiDAR VCSEL光源模塊AX01 下一篇: 技術分享 | Laser Bonding of Displays
隱私偏好中心
為了使站點正常運行并為訪問者提供無縫和定制化體驗,Cookie 和其他類似技術(“Cookie”)非常重要。 Zoom 通過 Cookie 支持您使用我們的站點。 我們還通過 Cookie 允許您個性化定制您使用我們網站的方式,為您提供增強的功能,并不斷提高我們網站的表現。 如果您已啟用下面的定向 Cookie,我們可能會將根據您的賬戶類型或登錄狀態允許第三方廣告商使用他們在我們的站點上所設置的 Cookie 在我們的網站或產品上向您顯示與您相關的廣告內容。
您可以接受或拒絕除“絕對必要 Cookie”之外的所有 Cookie,或者定制下面的 Cookie 設置。 您可以隨時更改您的 Cookie 設置。 部分“絕對必要性 Cookie”可能會將個人數據傳送到美國。 要了解有關 Zoom 如何處理個人數據的更多信息,請訪問我們的隱私聲明
將下面標有“定向”的按鈕切換為關閉狀態之后,加利福尼亞州的居民可以行使“選擇拒絕出售個人信息”的權利。
接受Cookie
管理許可偏好
  • +目標定位
    我們的廣告合作伙伴可以通過我們的站點設置這些 Cookie。 這些 Cookie 可供廣告合作伙伴公司根據自有策略跟蹤您使用我們網站的情況,并可將相應信息與其他信息相結合,然后在我們的站點? ??其他站點上向您顯示相關廣告。 如果您不允許使用這些 Cookie,您將不會在 Zoom 網站或產品上看到個性化廣告。
  • +功能
    這些 Cookie 支持網站提供增強型功能和定制功能。 Cookie 可能由我們或由在我們的網頁上添加服務的第三方供應商設置。 如果您不允許這些 Cookie,那么部分或所有的這些服務可能無法正常運行。
  • +性能
    這些 Cookie 使我們能夠計算訪問量和流量來源,以便我們評估和改進我們的網站性能。 這些 Cookie 可幫助我們了解哪些頁面最受歡迎,哪些頁面最不受歡迎,并了解訪問者在網站上的瀏覽方式。 如果您不允許這些 Cookie,我們將不知道您何時訪問過我們的網站,也無法監測網站性能。
  • +絕對必要

    始終處于活動狀態

    這些 Cookie 對于網站的運行是絕對必要的,且無法在我們的系統中關閉。 通常,只有在您做出近乎服務請求的行為(例如,設置您的隱私偏好、登錄或填寫表單)時才會設置這些 Cookie。 您可以將瀏覽器設置為阻止或提醒您注意這些 Cookie,但網站的某些部分可能會無法運行。
確認我的選擇
主站蜘蛛池模板: 欧美色性视频| 国产二区视频| 亚洲s色| 国产精品自拍网站| se333se亚洲精品| 免费a v在线| 波多野结衣一区二区在线| 免费一级淫片| 免费视频国产| 性插免费视频| 手机看片日韩国产| 色呦| 中文字幕一区二区三区四区欧美| 亚洲丝袜中文字幕| 免费看色| 青青草国产精品视频| 暖暖日本在线观看| 亚洲综合自拍| 97人人模人人爽人人喊38tv| 日韩精品手机在线观看| overflow观看| 欧美精品v国产精品v日韩精品| 2021狠狠干| 91手机在线观看| 91免费视| 国内自拍真实伦在线观看| 久久蜜一区二区三区| 欧美激情偷拍| 在线色图| y11111少妇| 亚洲撸撸| 麻豆疯狂做受xxxx高潮视频| 人人爱人人舔| 成人音影| 亚洲黄色短视频| www.日本xxxx| 国产精选第一页| 在线观看h视频| 浓精喷进老师黑色丝袜在线观看| 欧美双性人妖o0| 色批网站| 91在线永久| 伊朗做爰xxxⅹ性视频| 久久不卡视频| 国产精品一区久久久| 黄色免费网站在线| 久久亚洲av无码精品色午夜麻豆| 国产日韩专区| 香蕉视频99| 第一色网站| 成年人在线视频网站| 久久久久久久久久99| 免费久久网站| av毛片在线免费看| 喷潮在线观看| 天堂成人在线| 女人的av| 亚洲成年人网| 手机看片欧美日韩| 天天操天天开心| 草莓视频成人在线| 欧美日本韩国一区二区| 久久黄色一级| 国产激情一区| 成人福利一区二区| 欧美一区黄片| 日本久热| 欧美亚一区二区三区| 日本欧美中文字幕| 免费av成人| 中文字幕亚洲在线| 免费亚洲天堂| 亚洲视频二区| 日韩一区二区不卡| 免费在线成人av| 青青草自拍视频| 一级在线视频| 中文字幕 国产精品| 天天操天天碰| 日韩精品一区二区在线观看| 老狼影院伦理片| 国产免费精彩视频| 伊人网黄色| 超碰97免费| 在线看网站| 国产精品系列视频| 亚洲欧美自拍一区| 免费a v视频| 99精品久久毛片a片| 黑人玩弄人妻一区二区三区| 女女百合国产免费网站| 日必视频| 91久草视频| 国产真实老熟女无套内射| 综合av一区| 亚洲天堂中文网| 日韩黄色高清| 最新毛片网| 91cn.com| 玉女心经是什么意思| 欧美亚洲国产成人| 久草视频这里只有精品| 少妇献身老头系列| 爱情岛论坛亚洲自拍| 日韩深夜福利| wwwyoujizz日本| 国产中文欧美日韩在线| 欧美黄色大片在线观看| 欧美成人国产精品一区二区| 乱肉合集乱高h男男双龙视频| 樱桃香蕉视频| 米奇av| 欧美三级在线| 夜夜春网站| 日韩欧美中字| 叼嘿视频在线免费观看| 欧美日韩综合在线观看| 911av| aa视频免费观看| 美女热逼| 在线观看视频亚洲| 91视频最新网址| hd国产人妖ts另类视频| 国产色片| 成人午夜av在线| 国产中文视频| 青草视频在线看| 131美女爱做视频| 午夜久久精品| 久久久视频6r| 男人喷出精子视频| 成人一二三四区| 经典三级在线视频| 亚洲激情免费观看| 吞精av| 午夜丁香影院| 9797色| 男人天堂a在线| 黄色男人的天堂| 国产一级做a爱免费视频| 精品国产乱码久久久| 日本福利网站| 国际精品igao视频网网址| 亚洲黄站| 国产深夜视频在线观看| 欧美三级午夜理伦| gogogo免费视频观看 高清国语| www.av小说| 亚洲淫视频| 天天射天天操天天干| 中文字幕第11页| 高清av一区二区| 亚洲区欧美区| aa爱做片免费| 视频福利在线| 久久美女毛片| 国产一区免费| 超碰影院在线观看| 欧美三级a| 边啃奶头边躁狠狠躁| 天天综合一区| 日本人妖在线| 国产精品白虎| 亚洲天天操| 免费看的黄色网| 亚洲欧美日韩国产一区| 欧美极品喷水| 日本爱爱免费视频| 黄色大尺度视频| 午夜av一区二区三区| 国产精品无码999| 香蕉视频在线免费看| 日本三级黄色录像| 日韩午夜视频在线观看| 日韩在线视频精品| 日韩av免费网址| 嘿嘿射在线| 国产我不卡| 啊啊啊快点视频| 日韩乱码人妻无码中文字幕| 日韩欧美四区| 国产男女激情| 2025中文字幕| 手机天堂av| 国产日韩精品一区二区| 俺也去俺也色| 欧美性色xxxx| 不卡一区在线观看| 国产呦小j女精品视频| 国产美女精品人人做人人爽| 午夜在线一区| wwwxx日本| 日韩在线视频在线观看| www.youjizz.com久久| 青青操视频在线观看| 少妇免费直播| 久久夜色精品国产亚洲| 男性影院| 麻豆tv在线| 丝袜美腿av| 日本亚洲精品视频| 91无限观看| 特黄一毛二片一毛片| 久久久国产高清| 69伊人| 日韩在线综合网| 动漫同人高h啪啪爽文| 亚洲毛片av| 一卡二卡在线视频| 亚洲av首页在线| 欧美黄色免费在线观看| 亚洲美女屁股眼交3| 欧美a级片视频| 色激情综合| 久久一级免费视频| 国产一区二区在线视频观看| 亚洲黄网在线| 免费看片91| 免费国产黄色网址| 久久精品国产99久久| 久久久999精品视频| 天天躁日日躁狠狠躁av麻豆| 亚洲h视频在线观看| 日韩狠狠操| 草久影院| 中出白浆| 特黄特色大片bbbb| 青草社区在线观看| 国产精品福利网站| 亚洲先锋在线| 四虎免费视频| 最新黄色av网站| 九色视频丨porny丨丝袜| 亚洲综合欧美日韩| 免费av黄色| 黑丝国产一区| 一区二区在线观看免费视频| av永久免费网站| 人人看人人草| 黄色天堂网| 先锋资源中文字幕| 国产性爱精品视频| 搡老岳熟女国产熟妇| 玖玖爱精品视频| 鲁一鲁一鲁一鲁一色| 欧美激情免费视频| 精品无码人妻少妇久久久久久| 久久精品视频免费看| 综合久久精品| 四虎影视永久免费观看| 艹少妇| a级毛片网| av女优一区| 久久国产传媒| 中文字幕乱码人妻二区三区| 精品国产观看| 日本国产精品| 色噜噜噜| 91爱爱爱爱| 三级色网站| 国产福利合集| 国产一区二区小说| 免费麻豆视频| 成人手机在线观看| 性视频免费| 亚洲做受高潮无遮挡| 丁香花完整视频在线观看| 久久久久久久久久久久久久久久久久久 | 天天射寡妇射| 毛片在线视频播放| 一级黄色电影网站| 日韩欧美亚洲国产| 3p在线播放| 亚洲干综合| 美女吞精视频| 日韩中文字幕在线观看| www.96av| 国产一二精品| 精品视频在线一区二区| 美日韩av| 萌白酱在线观看| 一区二区三区黄色| av第一页| 视频二区三区| 校园春色av| 成人在线直播| 国产精品视频全国免费观看| 日韩欧美视频一区二区| 欧美激情xxxxxx| 中国老女人av| 中文字幕av在线播放| 亚洲欧美日韩不卡| 午夜精品亚洲日日做天天做| 天天操天天干天天操| 欧美做爰xxxⅹ性欧美大片| 免费韩国av| 天堂网8| 成人午夜免费在线| 欧美日韩一二三| 婷婷六月激情| 美女日批在线观看| 一道本无吗一区| 亚洲人交配| 欧美亚洲韩国| 成人免费亚洲| 亚洲gv猛男gv无码男同| 夜夜摸夜夜操| 超碰狠狠| 激情综合婷婷| 亚洲免费av一区二区| 国内久久久久| 欧美成人手机在线| hd中字听话就升职的背景故事 | 伊人影院中文字幕| 免费久久av| 国产乱码一区二区| 国产精品一线天粉嫩av| 在线中文字幕播放| 天天色成人| 91成人在线播放| 天天干天天谢| 久久综合免费| 国产精品自拍区| 亚洲特黄一级片| 瑟瑟视频免费看| 天天草狠狠干| 亚洲一级理论片| av播播| 欧美一级视频在线观看| 偷拍视频一区二区| av在线播放地址| 超碰网站在线观看| 久久国产亚洲| 黄色免费网页| 嫩草视频在线免费观看| 欧美粉嫩videosex极品| 日韩一二三区视频| 天天色网站| 99免费视频| 啪啪亚洲| 成人做爰69片免费| 国产69精品久久| 亚洲精品男人的天堂| 熟女肥臀白浆大屁股一区二区 | 狠狠操女人| 国内黄色片| 男人视频网站| 最新国产在线视频| 欧美日韩1区| 国产观看| 狠狠躁夜夜躁人人爽天天高潮| 成人在线激情| 国产精品久久久久久夜夜夜夜| 成人在线观看黄色| 99爱这里只有精品| 青娱乐导航| 日韩视频在线直播| 久久人人添人人爽添人人88v| 国产视频大全| 日日骚一区二区| 国产精品888| 日韩一区二区三区久久| 国产尤物在线| 国产伦精一区二区三区| 男人天堂a在线| 特黄老太婆aa毛毛片| 免费欧美黄色片| 十八禁毛片| 欧美日本激情| 色视频免费观看| 日韩字幕在线观看| 亚洲国产精品99久久久久久久久| 蜜桃色一区二区三区| 欧美日韩首页| www.超碰在线.com| 欧美日韩精品网站| 懂色aⅴ一区二区三区免费| 欧洲一区二区在线观看| 处女朱莉| 国产欧美二区| 少妇偷人精品无码人妻| 美女大战精子| 中文字幕成人| 久久最新免费视频| 少妇人妻一区二区三区| 男女激情免费网站| 欧美人免费观看国产电影| 午夜偷拍福利| 人人草人人草| 一区二区三区 国产| 日韩在线观看视频网站| 亚洲视频一二三| 日本黄色免费| 中国精品一区二区| 色播亚洲| 中文字字幕在线中文| www.亚洲黄| 欧美成人手机在线视频| 久久久黄色片| 波兰女人毛茸茸| 中文字幕五区| 国产精品久久久.| 99性视频| 超碰在线观看97| 免费观看一级黄色片| 亚洲日皮| 色综合欧美| 日韩mv欧美mv国产网站| 天天五月天| 91免费国产| 美女综合网| 日韩视频免费| 在线观看视频免费入口| 国产福利不卡| 四色成人网| 九九三级| 在线观看av一区| 日本少妇xxxx| 91亚色在线观看| 潘金莲激情呻吟欲求不满视频| 中文字幕视频| 久久精品无码av| 欧美视频你懂的| 欧色图| 国产无套内射久久久国产| 窝窝午夜精品一区二区免费| 欧美极品一区二区| 偷拍一区二区| 国产精品一区二区三区四区五区 | 香蕉av在线播放| 欧美黑人视频| 欧美a性| 拔插拔插海外华人永久免费| 色综合久久88色综合天天免费| 国产经典一区二区三区| 91精品综合久久久久久五月天| 国产一级视频免费观看| 就要操av| 91在线观看.| 中文字幕永久在线视频| 99tv在线观看| 在线观看黄色录像| 性网站在线观看| 乳色吐息免费看| 欧美三级视频网站| 一起草最新网址| 久热免费在线| 欧美www在线观看| 欧美在线一二三| 国产福利久久久| 精品av在线播放| 日韩免费一级| 自拍偷拍网| 自拍偷拍第2页| 九色自拍| 999一区二区三区| 午夜窝窝| 国产不卡精品视频| 伦av综合一区| h视频在线观看网站| 玩弄白嫩少妇xxxxx性| 亚洲特级片| 91免费网| 91玉足脚交白嫩脚丫| 欧洲av无码放荡人妇网站| 91精品人妻互换一区二区| 嫩草影院一区二区三区| 免费观看xxxx9999片| 97国产精品人人爽人人做| 久久久久影视| 精品一二三区久久aaa片| 激情国产在线| 亚洲偷怕| 夜夜操天天干,| 日本不卡在线视频| 国产高清不卡一区| 亚洲成人中文在线| 国产视频首页| 午夜精品久久久内射近拍高清| 在线观看毛片网站| 亚洲二级片| 自拍偷拍导航| 国产3p视频| xxxxwwww在线观看| 亚洲色啦啦狠狠网站| 成人做爰69片免费看| 亚洲香蕉久久| 黄瓜视频在线免费观看| 日韩av一卡二卡| 国产精品对白刺激久久久| 懂色一区二区二区av免费观看| 免费亚洲网站| 双性娇喘浑圆奶水h男男漫画| 精品久久影视| √在线天堂中文最新版网| 黄色视屏在线| 在线观看小视频| 成人国产精品| 美女在线观看www| 日韩黄网|