在线免费看污视频I亚洲欧美另类在线I狠狠干天天I99ri在线观看I九一avI女生毛片Ixxxrtxxx性国产Ia√在线视频I欧美日一本Ixxxx大片I丝袜五月天I国产肥熟I青青青在线视频I天堂网在线中文I亚洲综合成人avI日韩欧美中文I有码一区I亚洲电影avI欧美日韩乱国产I国产特黄

新聞活動


    
首頁新聞活動 新聞
返回

技術分享 | 仿真和建模在高功率半導體激光器封裝中的關鍵作用

發(fā)布日期:2020-11-16

Originally published on Laser Focus World?

炬光科技多年來一直注重基礎研究,每年在專業(yè)期刊、雜志、學術會議等平臺發(fā)表各類技術文章,并曾出版世界第一本高功率半導體激光器封裝專著。近日,《Laser Focus World》發(fā)表了炬光科技首席科學家王警衛(wèi)等撰寫的技術文章《Simulation and modeling play key roles in high-power diode-laser packaging》,文章針對激光技術發(fā)展對封裝技術提出的新挑戰(zhàn),介紹了仿真和建模在高功率半導體激光器封裝中發(fā)揮的關鍵作用。

文章概要如下:

高功率半導體激光器已廣泛應用于很多行業(yè)。隨著激光技術的發(fā)展,其輸出光功率越來越高,激光巴條的腔長也相應地由1mm增加到了4mm。因此,巴條的廢熱能量密度從200W/cm2急劇增加到>600W/cm2。為獲得低的“SMILE”,如<1μm,或防止巴條在貼片鍵合后出現裂紋,需要采用腔長1.5mm~4mm的巴條,并優(yōu)化封裝結構,最大限度地降低熱應力。這兩者都給現有的封裝技術帶來了挑戰(zhàn),從而有必要使用有限元模型(FEM)來計算和模擬高功率半導體激光器的熱行為和熱應力管理。

我們研究了在連續(xù)波(CW)或準連續(xù)波(QCW)模式下,不同封裝結構有限元模擬技術的應用,所涉及的計算和模擬仿真都是基于炬光科技的產品,包括單巴傳導冷卻/微通道系列、傳導冷卻G-stack、水冷疊陣和面陣。我們還提出了在制造高功率半導體激光器之前利用FEM工具進行熱與應力模擬的指導方針。此類模擬仿真結果可有效降低封裝結構或激光系統出現的潛在熱與應力風險,并有助于降低試驗成本、優(yōu)化流程,最終滿足不同客戶的需求。

Simulation and modeling play key roles in high-power diode-laser packaging

Finite-element method (FEM) simulations reduce potential thermal and stress risks when designing packaging structures for high-power laser-diodes.

JINGWEI WANG, TUANWEI FU, and XUEJIE LIANG

FOCUSLIGHT TECHNOLOGIES INC.

High-power diode-lasers (HPDLs) are now widely used for industrial (materials processing procedures such as welding, cutting, surface treatment, etc.), scientific, and medical applications. The need to design advanced high-power laser packages, to understand the physics of the behaviors of these packages and its interfaces, and to prevent possible functional (optical) and mechanical (physical) failures are of obvious practical importance. As laser technologies develop, the output power of HPDLs has grown, along with the cavity length of diode laser bars increasing from 1 to 4 mm. As a result, the waste-heat energy density of a single diode laser bar has increased dramatically from 200 W/cm2 to more than 600 W/cm2.

Many failures in HPDLs—for example, bonding interfaces—are directly related to the packaging.1 Thermal behaviors of the bonding interfaces and thermal stresses between the bonding interfaces are the major factors affecting the functional and structural performance of HPDLs. If the accumulated heat cannot readily escape, the elevated temperature and thermally induced stress at the location of the p-n junction will not only adversely affect the output power, slope efficiency, threshold current, and device lifetime, but could also cause spectral broadening and wavelength shifts.2 The emitting wavelengths will shift if the junction temperature of the emitters across the array is not well controlled and/or not uniform. The above-mentioned scenarios make the thermal management of high-power laser devices a major challenge in designing, manufacturing, and utilizing HPDLs.

Simulation and modeling of thermal stress in packaging of HPDLs

微信圖片_20201225220659.png

FIGURE 1. An AL01 1064 nm laser module for lidar. (Courtesy of Focuslight)

Automotive lidar has become a very popular application for lasers in recent years. Focuslight Technologies (X’ian, China) offers various products for automotive lidar applications. Focuslight’s AL01 laser module (see Fig. 1) is designed for flash lidar applications. The module is a diode-pumped solid-state (DPSS) laser that uses Q-switch technology to enable pulse energies of up to 1.5 mJ per 3 ns pulse at 1064 nm wavelength. To ensure its stability at automotive-grade temperatures (-40° to 80°C), the module was designed and manufactured with advanced bonding and assembly processes; some special materials have been used as well.

微信圖片_20201225220703.png

FIGURE 2. Structure and stress: mismatched CTE (a) and matched CTE (b).

During the design process, the coefficient of thermal expansion (CTE)-matched principle was taken into account as a crucial factor. CTE mismatch between the laser bar and the thermoelectric cooler (TEC) could bring large thermal stress to the packaging process, cause a lot of cracks at the corner of the TEC, and potentially lead to device failure. The optimized selection of materials and dimensions has been achieved through repeated calculation and simulation modeling (see Fig. 2). By doing this, the final packaging structure has prevented cracks from forming at the corner of the TEC. Digital simulations helped the developer to find the right solution rapidly. Mass production and stable performance of AL01 modules have proved that the package design is optimal.

Industrial applications. Kilowatt- or even hundred-kilowatt-level HPDL stacks are widely used for scientific and industrial applications (such as annealing, bonding, surface treatment, and others). A good example is Focuslight’s 6 kW DLight Series product. Applications such as solid-state laser pumping and materials processing require good beam quality from the diode-laser stack. The near-field nonlinearity along the laser bar (also known as “SMILE”), or the slight bend of the horizontal line connecting the emitters in the bar, is the main obstacle to achieving good beam quality. Minimizing the SMILE of HPDLs is key to achieving high brightness along the fast axis.

Thermal stress causes mechanical strain in the diode and changes the band structure, thus changing the characteristics of the diode laser with respect to threshold, wavelength, polarization, and SMILE. In addition, induced thermal stress in the laser device may cause damage to the laser chips/bars and consequently shorten lifetime of the device.

SMILE and stress controlling.3 The thermal stress affecting the performance and reliability of HPDLs is mainly caused by the CTE mismatch between the mounting substrate and laser chip. For HPDL packaging, packaging materials with high thermal conductivities and CTEs that match those of the semiconductor materials—such as gallium arsenide (GaAs), indium phosphide (InP), and gallium nitride (GaN)—are desired. Thermal-stress management is one of the most critical challenges to packaging of HPDLs.

The bonding of diode laser chips onto their heat sinks is the most important step in the packaging process. Mechanical stress generated in the bonding process has typically always caused chip deformation (SMILE) as the device cooled down from the solder melting point to room temperature. As a result, how to decrease the mechanical stress in the packaging process becomes the key to minimizing the SMILE value.

微信圖片_20201225220707.png

FIGURE 3. Two different laser-diode packaging structures: HMCC (a) and DMCC (b).

微信圖片_20201225220711.png

FIGURE 4. Simulation and experiment results: simulated stress of HMCC (a); simulated stress of DMCC (b); and experimental SMILE value with increasing CuW thickness (c).

For digital-simulation modeling of this process, different packaging structures and materials were selected (see Fig. 3); the simulated results are shown in Figure 4a and 4b. A continuous-wave (CW) 200 W diode-laser bar with a thermal density of greater than 500 W/cm2 can be bonded on a microchannel cooler (MCC) heat sink. Thermal-dissipation capability should be considered in the simulation, as well as how to minimize the “SMILE” value. The finite-element model (FEM) simulation results show that the compression stress on the laser bar decreases with the increase of copper-tungsten (CuW) submount thickness, as the CuW submount works as a buffer layer and can thus absorb stress. However, the laser bar out-of-plane strain (SMILE value) is approximately zero when the diode-laser array is directly bonded onto the heat sink without a submount; the SMILE value is maximized when the thickness of the CuW submount is increased to 44% of the heat sink. Beyond this point, the SMILE value decreases with increasing CuW submount thickness. As seen in Figure 4c, the experimental results are well aligned with the simulation results.2 Therefore, the thickness of the submount affects the near-field nonlinearity of a laser bar significantly.

Simulation and modeling of heat in packaging of HPDLs

Scientific applications. Besides the SMILE, spectral width is also one of the key parameters of a diode-laser vertical stack. Improving the stack’s spectral performance is very important for increasing production yield, reducing costs, and enhancing competitiveness. For some scientific applications, narrow spectral width is especially important.

Thermal design of HPDLs is critical, as a rise of junction temperature at the location of the p-n junction will adversely affect the output power, slope efficiency, threshold current, and lifetime of the device if the accumulated heat cannot be easily dissipated. Excessive heat can also cause spectral broadening and wavelength shift. Thermal management of HPDL devices has become a major challenge in laser design, manufacturing, and application.

微信圖片_20201225220715.png

FIGURE 5. Design of parallel format for liquid cooling.

In the design process for a vertical-stack laser, one of the main problems is the thermal crosstalk, which seriously affects the cooling efficiency. To avoid thermal crosstalk, a parallel liquid-cooling format is designed to overcome heat unevenness between the bars, effectively improving the thermal dissipation. Figure 5 shows the design of the parallel format of liquid cooling.

微信圖片_20201225220721.png

FIGURE 6. Thermal distribution of a MCC-based sack in CW mode.

In the following case, the thermal design and structure optimization of a vertical-stack laser with more than 20 bars was simulated. The simulation results in Figure 6 show that most of the heat is dissipated via the cooling-flow liquid. There is no significant accumulation of heat and the temperature gradient of each bar is relatively uniform. The maximum temperature on the stack is 60.13°C.

Based on the thermal simulation, the structure is optimized in many aspects, such as cooling-water flow rate, microchannel cooler design, and water distribution. The heat is taken away as quickly as possible by the cooling water, ensuring that no thermal accumulation exists between the bars.

Although the laser bars in vertical stacks are simultaneously conduction cooled and microchannel-liquid cooled, temperature nonuniformity remains among the bars due to thermal crosstalk and/or liquid flow nonuniformity. This nonuniformity can alter the wavelength of the bars and broaden the spectrum of the stacks.

微信圖片_20201225220725.png

FIGURE 7. Relationship between water flow and temperature.

To achieve a very narrow spectral width, in our work, advanced packaging processes have been used to maintain uniformity of temperature distribution. First, total temperature distribution is simulated and calculated (see Fig. 7). Next, the wavelength of each bar is selected to match the temperature distribution based on the simulation results. The third and last step is to use optimized packaging technology to achieve the same output wavelength. Using this method, the spectrum broadening of a vertical stack can be effectively controlled.

Simulation and modeling of heat and stress in optical collimation microlenses

Optical collimation microlenses, including fast-axis collimators (FACs), slow-axis collimator (SAC) arrays, homogenizers, diffusers, collimators, beam transformation systems (BTS), and so on, are widely used in DPSS lasers, materials processing, 3D sensing, immersive photolithography, flexible display, lidar, and other application fields. These microlenses are commonly fixed on mechanical frames by adhesives. Controlling the stress on lenses and reduce the risk of cracks is therefore of great importance.

微信圖片_20201225220938.png

FIGURE 8. Stress optimization on adhesion layer.

A typical example is shown in Figure 8. A disastrous crack is found on a diffuser, although the adhesion is good. Simulation was carried out to look for causes of such cracks; the simulation results show that a higher stress, up to 61.58 MPa, occurred at one corner of the diffuser, which corresponds to the actual crack. After the adhesion in the FEA model was precisely controlled and the program run again, the stress on the diffuser decreased to 32.96 MPa, as shown in the figure. The result shows the benefit of FEM in improving adhesion processes.

Easy-to-use FEM methods have been presented for evaluating the thermal performance of HPDLs and the stress distribution in HPDLs. These methods make it much easier to understand the physics of the addressed thermal phenomena and predict their thermal behavior and performance. Digital-simulation modeling should be conducted before the manufacturing of HPDLs, helping to reduce R&D costs and quickly guiding engineers to the correct approach if thermal and stress distributions in a package are taken into account. The methodology described here for the application of diode-laser packages can also be used beyond this area of engineering for the analysis and design of packaging structures.

ACKNOWLEDGEMENT

DLight is a registered trademark of Focuslight Technologies.

REFERENCES

1. X. Liu et al., J. Appl. Phys., 100, 1, 013104 (2006).

2. H. Zhang et al., “High power 250 W CW conductively cooled diode laser arrays with low SMILE,” Proc. SPIE, 11261, 112610C (Feb. 2020).

3. C. Zah et al., “Low SMILE vertically stacked laser bars enable kW modular line lasers,” High Power Diode Lasers and System Conf. (Coventry, England), 9-10 (2017); doi:10.1109/hpd.2017.8261079.

Jingwei Wang is Chief Scientist, Tuanwei Fu is CAE Engineer, and Xuejie Liang is Manager of the Design and Simulation Technology Department, all at Focuslight Technologies, Xi’an, China.

E-mails: wangjw@focuslight.com, futw@focuslight.com, and liangxj@focuslight.com; m.szhanpeng.cn.

關于炬光科技:

西安炬光科技股份有限公司成立于2007年,是一家全球領先的專業(yè)從事高功率半導體激光器、激光微光學元器件、光子技術應用解決方案的研發(fā)、生產及銷售的國家級高新技術企業(yè)。公司圍繞光子技術及應用領域,致力于為全球客戶提供高功率半導體激光器與激光微光學核心元器件及光子技術應用解決方案,形成了全面、完善的研發(fā)、生產及銷售服務體系。

上一篇:新品發(fā)布 | Flash LiDAR VCSEL光源模塊AX01 下一篇: 技術分享 | Laser Bonding of Displays
隱私偏好中心
為了使站點正常運行并為訪問者提供無縫和定制化體驗,Cookie 和其他類似技術(“Cookie”)非常重要。 Zoom 通過 Cookie 支持您使用我們的站點。 我們還通過 Cookie 允許您個性化定制您使用我們網站的方式,為您提供增強的功能,并不斷提高我們網站的表現。 如果您已啟用下面的定向 Cookie,我們可能會將根據您的賬戶類型或登錄狀態(tài)允許第三方廣告商使用他們在我們的站點上所設置的 Cookie 在我們的網站或產品上向您顯示與您相關的廣告內容。
您可以接受或拒絕除“絕對必要 Cookie”之外的所有 Cookie,或者定制下面的 Cookie 設置。 您可以隨時更改您的 Cookie 設置。 部分“絕對必要性 Cookie”可能會將個人數據傳送到美國。 要了解有關 Zoom 如何處理個人數據的更多信息,請訪問我們的隱私聲明
將下面標有“定向”的按鈕切換為關閉狀態(tài)之后,加利福尼亞州的居民可以行使“選擇拒絕出售個人信息”的權利。
接受Cookie
管理許可偏好
  • +目標定位
    我們的廣告合作伙伴可以通過我們的站點設置這些 Cookie。 這些 Cookie 可供廣告合作伙伴公司根據自有策略跟蹤您使用我們網站的情況,并可將相應信息與其他信息相結合,然后在我們的站點? ??其他站點上向您顯示相關廣告。 如果您不允許使用這些 Cookie,您將不會在 Zoom 網站或產品上看到個性化廣告。
  • +功能
    這些 Cookie 支持網站提供增強型功能和定制功能。 Cookie 可能由我們或由在我們的網頁上添加服務的第三方供應商設置。 如果您不允許這些 Cookie,那么部分或所有的這些服務可能無法正常運行。
  • +性能
    這些 Cookie 使我們能夠計算訪問量和流量來源,以便我們評估和改進我們的網站性能。 這些 Cookie 可幫助我們了解哪些頁面最受歡迎,哪些頁面最不受歡迎,并了解訪問者在網站上的瀏覽方式。 如果您不允許這些 Cookie,我們將不知道您何時訪問過我們的網站,也無法監(jiān)測網站性能。
  • +絕對必要

    始終處于活動狀態(tài)

    這些 Cookie 對于網站的運行是絕對必要的,且無法在我們的系統中關閉。 通常,只有在您做出近乎服務請求的行為(例如,設置您的隱私偏好、登錄或填寫表單)時才會設置這些 Cookie。 您可以將瀏覽器設置為阻止或提醒您注意這些 Cookie,但網站的某些部分可能會無法運行。
確認我的選擇
主站蜘蛛池模板: 性国产精品| 成人一区视频| 国产有码在线观看| 亚洲不卡一区二区三区四区| 国产三级91| 国产精品久久久久久久毛片| www,超碰| 嫩草网站入口一区二区| 久久福利一区| 亚洲亚洲人成综合网络| www网站在线免费观看| 亚洲视频在线免费看| 亚洲伦理一区二区| 亚洲操比| 欧美一级淫片aaaa| 久草免费福利| 国产毛片18| 波多野结衣视频在线| 黄色一级免费片| 天天欲色| 超清纯大学生白嫩啪啪| 香蕉福利影院| 少妇av中文字幕| av.www| 国产日韩欧美在线免费观看| 91福利在线免费观看| 中国少妇高潮| 韩国久久久| 富二代成人短视频| 奇米影视色| 日本韩国欧美一区二区| 狠狠干欧美| 91久久精品一| 可以直接看的无码av| 神马午夜dy888| 91亚洲国产成人精品一区| 狠狠躁夜夜躁久久躁别揉| av片在线免费观看| 久久久久久久久久99精品| 激情小说一区| 亚洲精品20p| 国产熟女精品视频| 丰满大乳奶做爰ⅹxx视频| 亚洲青草视频| 欧美a级黄色| 久久精品一二三区| 成为性瘾网黄的yy对象后| 97热久久| 久久中文字幕视频| 九九热精| 久久精品www人人爽人人| 人妻无码久久一区二区三区免费| 日韩成人av毛片| 亚洲第二页| 欧美一级黄色片| 黄色av网站在线免费观看| 羽月希奶水一区二区三区| 一本一道久久| 亚洲性视频在线| 波多野结衣视频免费看| 亚洲精品乱码久久久久久久| 日韩久久三级| 亚洲天堂免费在线观看视频| 欧美激情999| 色在线看| 国产做受69| 啪啪导航| 免费无码肉片在线观看| 毛片在线网址| 天堂成人国产精品一区| 亚洲在线资源| 色视频导航| 国产做爰高潮呻吟视频| 清冷学长被爆c躁到高潮失禁| 天天噜日日噜| 久久经典| 久久综合一区二区| 中文字幕高清在线观看| 国产成人在线观看网址| 亚洲色图.com| 久草婷婷| 成人在线观看国产| 成人黄色在线免费| 在线色网站| 添bbbbb免费看高清视频| a人片在线观看| 夜夜骚av| jizz18欧美18| 国产中文字幕免费| 青青草免费在线视频观看| 免费网站成人| 成人精品视频在线播放| 日本3p视频| 伊人99re| 综合av在线| 女人扒开屁股让男人桶| 黄色在线免费播放| av无限看| 国产亚洲片| 国产免费一区二区三区视频| 特级西西444www| 欧美色偷偷| www.日本高清视频| 国产伦理精品| 亚洲人成网站999久久久综合| 日韩特黄一级片| 爱蜜臀av | 成人刺激视频| 一区视频在线免费观看| 免费看片黄色| 精品视频网站| 日本精品一区二区| 国产在线视频资源| 森泽佳奈中文字幕| 亚洲国产精品免费视频| 成人区人妻精品一区二| 伊人久久精品一区二区三区| 久久伊人免费| 欧美一及片| 久久人人爽爽爽人久久久| 色av网站| 综合色小说| 三级在线观看| 香蕉污视频在线观看| 亚洲av无码一区二区三区人| 啪网站| 婷婷在线影院| 成人三级做爰视频在线看| 超碰国产91| 黄色xxxxx| 日韩久久一区| 青青草免费在线观看| 欧美不卡三区| 午夜在线观看免费视频| 美女自拍视频| 日韩精品一二三| 操天天操| 国产欧美日韩视频在线观看| 精品aaa| 久草资源网| 国精品人妻无码一区二区三区喝尿 | 69xav| 激情毛片视频| 欧美日韩少妇| 97色涩| 亚洲我射av| 人妻少妇精品一区二区| 欧美中文| 无码人妻丰满熟妇区bbbbxxxx| 色亚洲视频| 九九九九九九九九九| 女同视频网站| 欧美岛国国产| 日韩一区二区免费视频| po18在线观看| 免费黄色av电影| 97人妻精品一区二区三区| 超碰凹凸| 国产v片在线播放| 日韩一区二区三区中文字幕| www.av72| 五月婷婷狠狠爱| 日本一级理论片在线大全| 三级视频在线播放| 野外做受又硬又粗又大视频√| 亚洲无码国产精品| 欧美xxxxxxxxx| 国产a在亚洲线播放| 涩涩一区| 精品丰满少妇一区二区三区| 一本色道久久综合亚洲| 91视频毛片| 狠狠做| 黄色一级网| 亚洲欧美日韩国产一区| 一个人看的www片免费高清中文| 久久免费偷拍视频| 蜜臀久久99精品久久久无需会员| 中文字幕免费在线| 午夜羞羞羞| 桃花岛影院| 伊人影院在线看| 欧美一级黑人| 亚洲美女视频一区二区三区| 97精品人人a片免费看| 日韩激情文学| 私拍在线| 久久久av网站| 欧美精品系列| 日本精品人妻无码77777| 鲁一鲁啪一啪| 香港一级纯黄大片| 成人第一页| www.x日本| 国产95在线| 成人亚洲精品777777ww| 久久久久久国产精品免费| 美女网站全黄| 欧美日韩三级在线观看| www.天堂av| 欧美一级一级| 精品久久人人| 国产综合免费视频| 美女一区二区视频| 色图社区| 日本黄色三级| 亚洲色图在线看| 国产成人看片| 亚洲一区国产精品喷潮| 岛国片在线免费观看| 精品久久久久久国产| 91av国产精品| 久久精彩| 国产999在线| 黄色小视频免费在线观看| 午夜国产小视频| 国产精品久久久精品三级| 亚州国产| 日韩av在线免费观看| 五月婷婷色综合| 91久久夜色| 69av网| www.色黄| xxx视频在线观看| 亚洲免费影院| 92福利在线| www.爱爱.com| 精品国模一区二区| 涩涩网站免费观看| 最新日韩欧美| 中文有码av| 精品视频久久久| 曰本理伦片午夜理伦片| av资源网址| 日韩无遮挡| 黄色片子一级| 韩国三级hd中文字幕| 黄色三级视屏| 日韩视频免费在线播放| 天堂69堂在线精品视频软件| 黄色免费高清| 欧美色狠| 在线看污网站| 99久久久无码国产精品| 岛国av不卡| 丁香啪啪| 日本日本19xxxⅹhd乱影响| 求个黄色网址| 九九超碰| 日日夜夜免费| 深夜免费福利| 手机看片1024久久| 都市激情男人天堂| 欧美一级在线观看视频| 天堂av色综合久久天堂我不卡| 亚洲精品一区二区三区新线路| 国产永久免费| 天天干伊人| 中文字幕97| 欧美影院一区| 久久成人在线| 欧美色妞网| 成人a v视频| 一区影视| 中国少妇av| 147人体做爰大胆图片成人| 国产麻豆视频| 日韩视频免费观看高清完整版在线观 | 五月激情婷婷网| 亚洲黄色片| 国产探花精品在线| 国产系列在线观看| 午夜亚洲一区| 国产a级一级片| 17c在线观看视频| 午夜影院体验区| 肉丝一区二区| 亚洲一级片网站| 日韩毛片儿| 国产一区二区三区在线免费观看| 在线免费av网| 天天射天天拍| 国产美女在线看| 手机电影在线观看| 亚洲成年网| 日本一区二区视频| 88av在线视频| 中文字幕一区在线播放| 嫩嫩的一线天xxx馒头| 韩国一区二区三区在线观看| 国产乱淫av麻豆国产免费| 农村妇女毛片| 久章操| 一本一本久久a久久精品综合| 男人天堂资源网| 国产成人激情视频| 国产欧美日韩另类| 又色又爽又黄| 久久蜜桃精品av| 免费a级黄色毛片| 女人18片免费视频网站| 国产美女引诱水电工| 福利片 在线| 会喷水的亲姐姐| 手机看片99| 欧美成年人视频在线观看| 国产精品啪啪啪视频| 成年人av电影| 东京热无码av一区二区| 三级a级片| 本道久久| 视频在线看| 人妻91麻豆一区二区三区| 污污在线看| 亚av在线| 国产区在线看| 成人爽a毛片| 91黄色入口| 成人xxxx视频| 日本成人在线播放| 亚洲专区中文字幕| 男人懂得网站| 91导航| 国产在线观| 麻豆chinese极品少妇| 欧美亚洲综合在线| 狠狠噜噜| 欧美三级中文字幕| 宅男噜噜噜| 十八禁一区二区三区| 国产www免费观看| 国产欧美日韩视频| 免费在线观看一区二区| 欧美一级成人| 欧美毛茸茸| 国产福利在线观看视频| www午夜| 香蕉网在线视频| 在线观看一区二区视频| 伊人成年综合网| 粉嫩小箩莉奶水四溅在线观看| 91午夜在线| 成人深夜网站| 欧美视频在线观看免费| 91毛片网站| 日本一区二区在线不卡| 亚洲va欧美va国产综合定档| 人人搞人人爽| 日韩av福利在线观看| 好大好爽视频| 手机在线中文字幕| 一级片福利| 四虎影裤| 国产丝袜网站| 伊人夜夜躁av伊人久久| 中文字幕日本在线| 天天看天天操| 四虎国产精品成人永久免费影视| 日韩一级片视频| 日韩操操操| 亚洲超碰在线| 日韩欧美高清在线观看| 欧美日韩视频在线| 好了av在线| 男女在线观看| 日韩欧美偷拍| 久久久久99精品成人片毛片| 一级的大片| 欧美a黄| 亚洲av片一区二区三区| 亚洲欧洲日韩二区aaaaa| 久久久不卡| 中国女人做爰免费视频| 亚洲一区二区三区黄色| 麻豆超碰| 免费观看黄色网页| 国产精品成人va在线观看| 日韩午夜激情| 国产人妻人伦精品1国产| 国产精品免费看久久久无码| 肥臀熟女一区二区三区| 免费黄色短片| 欧美爱爱视频网站| 色婷婷精品国产一区二区三区| 一级片在线视频| 久草福利视频| 黄页嫩草| 久久国产视频播放| 欧美性爽爽| 狠狠爱综合| 国产操| 国产亚洲天堂| 一边摸上面一边摸下面| 久久久久久日产精品| 爱爱网站一区| 老色av| 欧美在线免费观看一区| www伊人网| 久久久www成人免费毛片麻豆| 亚洲乱色熟女一区二区| 久久婷五月天| 国产第一福利影院| 伊人夜夜| 射综合网| 在线观看高清视频| 色综合激情网| 久久中文综合| 成人网页| 久久精品99久久久久久久久| 欧美一区二区三区爽爽爽| 亚洲激情视频一区| 日韩插插插| av电影在线网站| 伊人96| 91精品一区| 亚洲一区成人| 亚洲国产精华液网站w| 台湾成人av| 久久亚洲热| 永久精品视频| 99视频一区二区三区| 奇米影视久久| 成人一级免费电影| 国产污视频在线播放| 色噜噜网站| 欧美高潮视频| 青青草免费观看视频| 日韩午夜剧场| 欧美一区二区激情视频| 热久久中文| 欧美xxxxxhd| 日本在线视频一区二区三区| 91黄色在线视频| 国产精品sss| 欧美日韩日本国产| 美女被到爽高潮视频| 韩日欧美| 天天视频色版| 欧美亚洲综合视频| 国产精品成久久久久三级| 色玖玖| 亚洲国产综合网| 亚洲无码国产精品| 国产精品传媒在线| 精品电影一区二区| www黄色网址| 男女午夜爽爽爽| 偷拍亚洲精品| 男女aa视频| 免费毛片毛片| youjizz欧美| 奇米狠狠干| 俺操操| 亚洲人在线| 中国爆后菊女人的视频| 成人免费毛片日本片视频| 91看篇| 1769国产| 亚州男人天堂| 天堂888| 色综合久久88色综合天天提莫| 在线观看国产小视频| a激情| 肉视频在线观看| 黄色一级网| 久久伊人蜜桃| 做爰xxxⅹ性护士hd在线| 久久久精品国产sm最大网站| 日韩精品一区二区亚洲av| 国产自产精品| 波多中文字幕| 日韩久久精品电影| 国产精品成人一区二区| 成人国产毛片| 欧美激情黑白配| 欧美精品在线播放| 久久高清精品| 中文字幕国产在线观看| 三级第一页| 国产中文在线| 色综合久久久无码中文字幕波多 | 大肉大捧一进一出视频| 一级片中文字幕| 国产女人18水真多18精品一级做| 日本熟女一区二区| 天天干夜夜干| 国产成人精品亚洲线观看| 日韩一区二区三区在线播放| 落日余晖图片| 免费看三级黄色片| 亚洲一级免费毛片| 欧美爱爱小视频| 特黄免费| 国产视频手机在线| 91免费黄视频| 一区二区不卡视频| 国产又粗又黄| 国产亚洲精品熟女国产成人| 国产无套内射普通话对白| 欧美成人高清视频|